Synthesis of peptidoglycan and membrane during the division cycle of rod-shaped, gram-negative bacteria.

نویسندگان

  • D Gally
  • K Bray
  • S Cooper
چکیده

A modified procedure for determining the pattern of peptidoglycan synthesis during the division cycle has allowed the measurement of the rate of side wall synthesis during the division cycle without the contribution due to pole formation. As predicted by a model proposing that the surface growth of the cell is regulated by mass increase, we find a decrease in side wall synthesis in the latter half of the division cycle. This supports the proposal that, upon invagination, pole growth accommodates a significant proportion of the increasing cell mass and that residual side wall growth occurs in response to the residual mass increase not accommodated by pole volume. The observed side wall synthesis patterns support the proposal that mass increase is a major, and possibly sole, regulator of bacterial surface increase. Membrane synthesis during the division cycle of the gram-negative, rod-shaped bacteria Escherichia coli and Salmonella typhimurium has also been measured with similar methods. The rate of membrane synthesis--measured by incorporation of radioactive glycerol or palmitate relative to simultaneous labeling with radioactive leucine--exhibits the same pattern as peptidoglycan synthesis. The results are compatible with a model of cell surface growth containing the following elements. (i) During the period of the division cycle prior to invagination, growth of the cell occurs predominantly in the side wall and the cell grows only in length. (ii) When invagination begins, pole growth accommodates some cytoplasmic increase, leading to a concomitant decrease in side wall synthesis. (iii) Surface synthesis increases relative to mass synthesis during the last part of the division cycle because of pole formation. It is proposed here that membrane synthesis passively follows the pattern of peptidoglycan synthesis during the division cycle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanisms for maintaining cell shape in rod-shaped Gram-negative bacteria.

For the rod-shaped Gram-negative bacterium Escherichia coli, changes in cell shape have critical consequences for motility, immune system evasion, proliferation and adhesion. For most bacteria, the peptidoglycan cell wall is both necessary and sufficient to determine cell shape. However, how the synthesis machinery assembles a peptidoglycan network with a robustly maintained micron-scale shape ...

متن کامل

Growth of the Stress-Bearing and Shape-Maintaining Murein Sacculus of Escherichia coli

INTRODUCTION .......................................................................................................................................................181 Reinforcement for the Wall ...................................................................................................................................181 MUREIN, A CROSS-LINKED BIOPOLYMER ....................................

متن کامل

Control of Cell Morphogenesis in Bacteria Two Distinct Ways to Make a Rod-Shaped Cell

Cell shape in most eubacteria is maintained by a tough external peptidoglycan cell wall. Recently, cell shape determining proteins of the MreB family were shown to form helical, actin-like cables in the cell. We used a fluorescent derivative of the antibiotic vancomycin as a probe for nascent peptidoglycan synthesis in unfixed cells of various Gram-positive bacteria. In the rod-shaped bacterium...

متن کامل

Cell wall elongation mode in Gram-negative bacteria is determined by peptidoglycan architecture

Cellular integrity and morphology of most bacteria is maintained by cell wall peptidoglycan, the target of antibiotics essential in modern healthcare. It consists of glycan strands, cross-linked by peptides, whose arrangement determines cell shape, prevents lysis due to turgor pressure and yet remains dynamic to allow insertion of new material, and hence growth. The cellular architecture and in...

متن کامل

The rate and topography of cell wall synthesis during the division cycle of Escherichia coli using N-acetylglucosamine as a peptidoglycan label.

The rates of synthesis of peptidoglycan and protein during the division cycle of Escherichia coli were measured by the membrane elution technique using cells differentially labelled with N-acetylglucosamine and leucine. During the first part of the division cycle the ratio of the rates of protein and peptidoglycan synthesis was constant. The rate of peptidoglycan synthesis, relative to the rate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 175 10  شماره 

صفحات  -

تاریخ انتشار 1993